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Atraric acid (AA) is a natural compound used for treatment of benign prostate hyperplasia. This agent has an
anti-androgen receptor (AR) activity suppressing androgen-mediated neo-angiogenesis. In the current study, we
have analyzed the transcriptome data of prostate cancer cells treated with AA (GSE172205) to find differentially
expressed genes (DEGs) with an especial focus on IncRNAs and miRNAs. Then, we assessed expression of the
differentially expressed IncRNAs (DEIncRNAs) in available online sources to validate their association with
prostate cancer and their importance in the determination of survival of patients with this type of cancer. We
obtained 1871 DEGs, including 914 down-regulated DEGs (such as DAB1 and CD200) and 957 up-regulated
DEGs (such as CHRNA2 and TRGC1), and 25 DEIncRNAs, including 15 down-regulated DEIncRNAs (such as
LINC00639 and HOTTIP) and 10 up-regulated DEIncRNAs (such as LINC00844 and LINC00160), and one up-
regulated DEmiRNA (MIR29B1). The main pathways for the down-regulated genes and the up-regulated genes
were Axon Guidance and Steroid BioSynthesis, respectively. Taken together, AA has been found to affect
expression of several IncRNAs which are possibly involved in the pathoetiology of prostate cancer.

1. Introduction line has shown differential expression of a number of genes upon
treatment treated with AA. Detailed analyses have shown the regulatory
effect of AA on the retinoblastoma protein (pRb) pathway. In addition,

AA could alter expression signature of genes in the reverse way of

Atraric acid (AA) is a natural compound extracted from the African
tree Pygeum africanum. This agent is used as a medication for treatment

of benign prostate hyperplasia [4]. Moreover, it has been shown to be an
androgen receptor (AR) antagonist [20]. More recently, AA has been
found to suppress androgen-mediated neo-angiogenesis through a
VEGF-independent mechanism that involves angiopoietin 2 [5]. Besides,
this compound could inhibit cell growth of castration-resistant prostate
cancer (CRPC) [5]. Mechanistically, AA not only suppresses activity of
the wild-type AR, but also inhibits AR mutants that facilitate resistance
to other antagonists of AR possibly though inhibition of the binding of
androgens to AR [5]. Furthermore, transcriptome analysis of a CRPC cell

androgen [5].

AR has functional interactions with a number of non-coding RNAs
(ncRNAs) with different sizes ranging from microRNAs (miRNAs) to
long ncRNAs (IncRNAs) [23]. These interactions are functionally
involved in the pathophysiology of human disorders, particularly pros-
tate cancer [23]. In the current study, we have re-analyzed the tran-
scriptome data of prostate cancer cells treated with AA (GSE172205) to
find differentially expressed genes (DEGs) with an especial focus on
IncRNAs and miRNAs. Then, we assessed expression of the differentially
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Fig. 1. Boxplot of normalized data and Cook’s distance measured for each sample.
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Fig. 2. Euclidean distances between the samples as calculated from the regu-
larized log transformation.
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Fig. 3. PCA plot of 12 samples are shown in the 2D plane spanned by their first
two principal components.

expressed IncRNAs (DEIncRNAs) in available online sources to validate
their association with prostate cancer and their importance in the
determination of survival of patients with this type of cancer.
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Fig. 4. Dispersion estimate plot. Gene-wise estimates, the fitted values and the
final maximum a posteriori estimates used in testing are shown in black, red
and blue, respectively.

2. Methods
2.1. RNA-seq data collection

We used the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) to find the RNA-seq raw counts of GSE172205 (Illumina
NextSeq 500 (Homo sapiens)), which contained 12 samples. Three
R1881 (1 nm) samples and three AA samples were chosen for further
study.

2.2. Dataset quality assessment
In Rstudio software (version 4.0.4), we imported the dataset and

assessed its quality. This step involves examining the Euclidean distance
of the samples using the Pheatmap package, performing principal
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Fig. 5. Heatmaps displaying expression data of the 30 most highly expressed genes. The data is of raw counts (left), from regularized log transformation (center) and

from variance stabilizing transformation (right).

Table 1

The top 10 up- and down-regulated DEGs between R1881 and AA samples (R1881 vs. AA).

Down-regulated

Up-regulated

DEG Log FC Adjusted P value DEG Log FC Adjusted P value
DAB1 -7.535166 1.683171e-07 CHRNA2 10.295103 1.129825e-139
CD200 -7.523300 5.639075e-07 TRGC1 9.504317 3.367003e-27
PLA2G2A -6.439443 4.497049e-52 STEAP4 9.226566 6.393554e-65
SI -6.421207 7.563954e-10 CCDC141 9.202280 1.806347e-24
UGT2B17 -6.347837 1.307757e-46 ORM2 8.881877 6.221102e-12
CYP7A1 -6.259775 5.972063e-05 ORM1 8.789585 3.338562e-11
UNC13C -5.992429 5.989688e-06 ADAM7 8.704370 2.900305e-11
CAMK2N1 -5.982837 2.378889e-285 PTCRA 8.33322 5.595144e-11
CDH10 -5.838935 9.143251e-04 ADH1C 8.322429 5.951366e-14
FST -5.645249 5.782776e-06 GP2 7.961415 3.288838e-09
Table 2
The significantly up- and down-regulated DEIncRNAs between R1881 and AA samples (R1881 vs. AA).
Down-regulated Up-regulated
DEG Log FC Adjusted P value DEG Log FC Adjusted P value
LINC00639 -5.210061 0.0021232 LINC00844 7.043368 1.739964e-09
HOTTIP -4.424055 1.747729-11 LINC00160 6.183482 9.759476e-05
COLCA1 -3.674422 8.515328e-43 LINC01088 5.608908 1.19901e-07
LINC00365 -2.490563 0.0053309 LINC00964 5.256506 0.003953163
LINC00940 -2.108542 2.301298e-15 LINC00668 4.953758 0.002328603
LINC00511 -1.888252 9.203472e-17 PART1 3.73564 1.087848e-21
HCP5 -1.753821 5.685447e-06 RFPL1S 3.459246 6.071452¢-14
LINC00648 -1.670406 2.774731e-06 UCA1 2.754571 0.0179697
FAM201B -1.640159 0.0019664 LINC00930 2.418421 1.806347e-24
LINC00887 -1.639043 0.0187391 TP53TG1 1.018093 1.533181e-07
LINC00900 -1.605906 0.0006550
LINC00574 -1.588727 0.0165464
LINC00933 -1.566320 0.0046505
LINC00886 -1.468178 6.371638e-10
RN7SL2 -1.189063 0.0011673
Table 3 DEGs. Furthermore, Bonferroni in the stats package was used to adjust

The significantly up- DEmiR between R1881 and AA samples (R1881 vs. AA).

Down-regulated Up-regulated

DEG LogFC  Adjusted P value  DEG Log FC Adjusted P value

MIR29B1 3.077267  2.878807e-06

component analysis, investigating normalized counts boxplot and cook’s
distance boxplot and investigating dispersion estimate plot for each
sample.

2.3. The dataset preprocessing and DEGs analysis

We analyzed raw counts data using DESeq2 package [14] and got

the P value into the FDR. We applied the FDR < 0.02 and |log2 FC= > 1
as the cutoff criteria for DEGs and DEIncRNAs.

2.4. Gene Ontology (GO) enrichment analyses

With the intention of exploring the functions of the obtained
considerably down-regulated and up-regulated DEGs, we performed
Gene Ontology (GO) enrichment analysis using the clusterProfiler R
package. We set Benjamini-Hochberg corrected p-value < 0.05 as the
thresholds of the functional categories.
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Fig. 6. Heatmap of differentially expressed IncRNAs. The horizontal axis dis-
plays the names of six samples. The vertical axis displays the IncRNAs names.

2.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis

KEGG pathway analysis of considerably down-regulated and up-
regulated DEGs was performed to determine the potential functions of
these genes that contributed to the pathways based on the KEGG
database.

2.6. Survival analysis

High-throughput experimental data with survival profile of prostate
cancer patients was retrieved from the TCGA database. The associations
between IncRNAs expressions and overall survival of prostate cancer
patients were appraised by using log rank test, with P-values less than
0.05 accepted as statistically significant.

3. Results
3.1. Dataset quality assessment

Fig. 1. shows the boxplot of normalized data and Cook’s distance
measured for each sample.

Fig. 2 shows the Euclidean distances between the samples as calcu-
lated from the regularized log transformation (rlog).

In PCA plot (Fig. 3), the selected 12 samples are shown in the 2D
plane spanned by their first two principal components (PC1 and PC2).
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Fig. 7. The volcano plot of differentially expressed genes (DEGs); horizontal
axis, log2(FQC); vertical axis, -logio(adjusted P value). Up-regulated and down-
regulated genes are clustered on the right and left parts of the plot, respec-
tively. The x-axis shows the fold change in genes expressions, and the y-axis
shows the statistical significance of the differences.

According to this plot, the AA samples and R1881 samples have the
highest variation relative to each other.

The dispersion estimate plot (Fig. 4) shows the gene-wise estimates,
the fitted values, and the final maximum a posteriori estimates used in
testing. This plot shows that the data is a good fit for the DESeq2 model.

Heatmap of the count Table is shown in Fig. 5.

3.2. DEGs analysis

Based on the RNA-seq data analysis between R1881 and AA samples
by DESeq2, we obtained 1871 DEGs, including 914 down-regulated
DEGs (such as DAB1 and CD200) and 957 up-regulated DEGs (such as
CHRNAZ2 and TRGC1), and 25 DEIncRNAs, including 15 down-regulated
DEIncRNAs (such as LINC00639 and HOTTIP) and 10 up-regulated
DEIncRNAs (such as LINC00844 and LINC00160), and one up-
regulated DEmiRNA (MIR29B1). Table 1 lists the top 10 markedly
down-regulated and up-regulated DEGs.

Table 2 lists the markedly down-regulated and up-regulated
IncRNAs.

Detailed statistics of the only DEmiRNA is shown in Table 3.

Expressions of these DEIncRNAs are shown in Fig. 6. The variations
of IncRNA and mRNA expression between R1881 and AA samples are
visualized and assessed using volcano plot (Fig. 7).

3.3. GO enrichment analysis of DEGs

The considerably down-regulated DEGs (LogFC<—1 and adjusted P
value<0.05) were enriched in 73 GO terms. In addition, the consider-
ably up-regulated DEGs (LogFC>1 and adjusted P value<0.05) were
primarily enriched in 62 GO terms. We used Clusterprofiler package
[25] to perform analysis. Fig. 8 shows the barplots of function enrich-
ment analysis.

3.4. Pathway analysis
Using Pathview [15] and gage [16] packages in R, KEGG pathways

analysis [10,11] of 914 down-regulated and 957 up-regulated DEGs
were executed to recognize the potential functional genes (Fig. 9). The
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Fig. 8. (continued).

main pathways for the down-regulated genes and the up-regulated genes
are Axon Guidance and Steroid BioSynthesis, respectively (Table 4).

3.5. Survival analysis

In this section, we retrieved RNA-seq data of prostate cancer from
TCGA. Survival analysis was based on the Kaplan-Meier curve analysis
using Survival package in R [2,24]. We performed survival analysis
based on the DEIncRNAs. The difference was statistically significant
with log-rank P < 0.05. Results showed that LINC00668, LINCO0887
and LINC00900 were significantly correlated with poor survival time in
patients with prostate cancer (Fig. 10).

4. Discussion

AR signaling has an important oncogenic effect in prostate cancer. In
fact, the core approaches for treatment of this malignancy are based on

controlling AR activity [1]. Acquired resistance to androgen deprivation
therapy is the main obstacle in the treatment of this kind of cancer
resulting in significant mortality and morbidity [19]. Therefore, iden-
tification of the molecular mechanisms of resistance to androgen
deprivation therapy would facilitate design of novel therapeutic targets
for these patients.

Next generation sequencing methods have facilitated identification
of numerous ncRNAs with functional relation with AR activity and
development or progression of prostate cancer [28]. We have used a
series of in silico methods for identification of differentially expressed
ncRNAs in CRPC cells treated with AA compound.

Our analysis led to identification of 1871 DEGs and 25 DEIncRNAs,
including 15 down-regulated DEIncRNAs (such as LINC00639, HOTTIP,
COLCA1l, HCP5 and FAM201B) and 10 up-regulated DEIncRNAs
(LINC00844, LINC00160, LINC01088, LINC00964, LINC00668, PART1,
RFPL1S, UCA1, LINC00930 and TP53TG1). Moreover, we found one up-
regulated DEmiRNA (MIR29B1).



S. Ghafouri-Fard et al.

Pathology - Research and Practice 240 (2022) 154198

AXON GUIDANCE

Data on KEGG graph
Rendered by Pathview

Neuron (developing growth cone)

—» Axonoutgrowth
-

(> [ — —— > Trsoriptio
(2es —»[rocich-——+{ L5t -

[
[se | lcen] M0 |

m—|—

m—>-

b
I
I
I
I
I
I
¥

Regulation of
actin eyioskeleton

s
Fes - ~ eorganization » xon repulsion
] -

il “+4+——»
GSK3p |

Fig. 9. Visualization of Axon Guidance and Steroid BioSynthesis pathways. Green boxes are down-regulated genes and Red boxes are up-regulated genes.



S. Ghafouri-Fard et al.

Pathology - Research and Practice 240 (2022) 154198

STEROID BIOSYNTHESIS

Terpenoid backbone

.-' 'rescuale ne-PP

IIHIH

-1

Shomeie

24,25-Diky
lanosterol o

anosterol

44 Direthyl-
cf.ole:fs.ejﬁ.zﬁ.ol

A Ilethyl zyraoste rol-
arbnx;sr]da te

|~ ———= Steroid horone biosynthesis
|
[~———[{ Steroid degradation

Secalciferol

Calcitetrol

Data on KEGG graph
Rendered by Pathview

Ergosteml

X 14a-diraethyl-96,19-cyelo-
e)gnst 2%(%6 4{1))-en- mégxngylaﬁeyc

24 Ethylidene-
et lophenol
114181

A A
24(:44(1))y Sea i 3|3 ol
111418

( Fecosterol
( JEpisterol
(_)5-Dehyrroepisterol

7,22,24(28)-Exgosta-
Citara

hy

Stigrasterol

Phytosterol

Vitarain D2

Fig. 9. (continued).

Table 4
Main pathways of up-regulated and down-regulated genes.

Down-regulated Up-regulated

Pathway P value Pathway P value

Axon Guidance 0.01 Steroid BioSynthesis 0.05

LINCO00639 has been among IncRNAs whose expression profiles have
been associated with progression of lung cancer [26]. HOTTIP has been
shown to promote proliferation of prostate cancer cells and their

migratory potential through sequestering miR-216a-5p [27]. Besides,
HOTTIP can establish a complex with TWIST1 and with WDR5 to induce
expression levels of HOXA9 through induction of alterations in chro-
matin structure leading to aggressive cellular phenotypes [17]. HOTTIP
binding with WDRS5 is also implicated in induction of cancer stem cell
features and enhancement of activity of Wnt/p-catenin pathway [6].
HCP5 is another down-regulated IncRNA by AA. This IncRNA has been
shown to promote proliferation of prostate cancer cells through
sequestering miR-4656 and modulating expression of CEMIP [9].
FAM201A has been reported to be involved in the radioresistance
phenotype of lung cancer through increasing expression of EGFR via
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Fig. 10. Kaplan-Meier survival curves of DEIncRNAs associated with overall survival of patients with prostate cancer.

miR-370 [7]. COLCA1 is among candidate susceptibility genes for
colorectal cancer which have been identified via assessment of eQTL [3].

Among the up-regulated IncRNAs by AA was PART1. This IncRNA is
a prostate-specific androgen-regulated gene [12] being up-regulated in
prostate cancer [21,29]. Moreover, AA could enhance expression of the
oncogenic IncRNA UCAL1 in prostate cancer cells. This IncRNA has been
reported to act as a ceRNA for miR-134, thus promoting progression of
prostate cancer [30]. Future studies are needed to find the functional
consequences of up-regulation of these IncRNAs by AA.

miR-29b has been shown to inhibits prostate cancer growth and in-
duces apoptosis through enhancing expression of Bim [22]. Therefore,
up-regulation of this miRNA by AA might represent a possible mecha-
nism for anti-cancer effect of AA.

The main pathways for the down-regulated genes and the up-
regulated genes are Axon Guidance and Steroid BioSynthesis, respec-
tively. The relevance of these DEGs with Axon Guidance can be
explained by the previous finding showing induction of axon guidance
processes in the bone or bone marrow stroma by osteolytic cancer cells
[8]. The Steroid BioSynthesis is explicitly implicated in the prostate
cancer through modulation of androgen levels.

Survival analysis showed that LINC00668, LINC00887 and
LINC00900 were significantly correlated with reduced survival time in
patients with prostate cancer. LINCO0668 has an established role in the
enhancement of progression of breast cancer through inhibition of

10

apoptosis and induction of cell cycle transition [18]. LINCO0887 is an
oncogenic IncRNA in nasopharyngeal carcinoma that influences cell
proliferation through miR-203b-3p/NUP205 axis [31]. LINC0O0900 has
been among TLR-related IncRNAs whose expressions are associated with
survival esophageal cancer patients [13].

Taken together, our study shows altered expression of several cancer-
related IncRNAs in prostate cancer cells upon treatment with AA.
Functional consequences of these alterations should be assessed in
future studies.
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