
Rahimi et al. 
BMC Medical Informatics and Decision Making           (2024) 24:38  
https://doi.org/10.1186/s12911-024-02443-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Informatics and
Decision Making

Prediction the prognosis of the poisoned 
patients undergoing hemodialysis using 
machine learning algorithms
Mitra Rahimi1, Mohammad Reza Afrash2, Shahin Shadnia1, Babak Mostafazadeh1, Peyman Erfan Talab Evini1, 
Mohadeseh Sarbaz Bardsiri3,4 and Maral Ramezani5,6* 

Abstract 

Background  Hemodialysis is a life-saving treatment used to eliminate toxins and metabolites from the body dur-
ing poisoning. Despite its effectiveness, there needs to be more research on this method precisely, with most studies 
focusing on specific poisoning. This study aims to bridge the existing knowledge gap by developing a machine-learn-
ing prediction model for forecasting the prognosis of the poisoned patient undergoing hemodialysis.

Methods  Using a registry database from 2016 to 2022, this study conducted a retrospective cohort study at Logh-
man Hakim Hospital. First, the relief feature selection algorithm was used to identify the most important variables 
influencing the prognosis of poisoned patients undergoing hemodialysis. Second, four machine learning algorithms, 
including extreme gradient boosting (XGBoost), histgradient boosting (HGB), k-nearest neighbors (KNN), and adaptive 
boosting (AdaBoost), were trained to construct predictive models for predicting the prognosis of poisoned patients 
undergoing hemodialysis. Finally, the performance of paired feature selection and machine learning (ML) algorithm 
were evaluated to select the best models using five evaluation metrics including accuracy, sensitivity, specificity 
the area under the curve (AUC), and f1-score.

Result  The study comprised 980 patients in total. The experimental results showed that ten variables had a sig-
nificant influence on prognosis outcomes including age, intubation, acidity (PH), previous medical history, bicar-
bonate (HCO3), Glasgow coma scale (GCS), intensive care unit (ICU) admission, acute kidney injury, and potassium. 
Out of the four models evaluated, the HGB classifier stood out with superior results on the test dataset. It achieved 
an impressive mean classification accuracy of 94.8%, a mean specificity of 93.5 a mean sensitivity of 94%, a mean 
F-score of 89.2%, and a mean receiver operating characteristic (ROC) of 92%.

Conclusion  ML-based predictive models can predict the prognosis of poisoned patients undergoing hemodialysis 
with high performance. The developed ML models demonstrate valuable potential for providing frontline clinicians 
with data-driven, evidence-based tools to guide time-sensitive prognosis evaluations and care decisions for poi-
soned patients in need of hemodialysis. Further large-scale multi-center studies are warranted to validate the efficacy 
of these models across diverse populations.
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Introduction
Intoxication is described as the appearance of disease 
symptoms in a human due to exposure to hazardous 
substances [1]. Research indicates that intoxication is 
prevalent globally among individuals visiting emergency 
rooms [2–4]. The World Health Organization (WHO) 
approximates that each year, 3.5 to 5 million people unin-
tentionally suffer from poisoning worldwide. About three 
million are severe, resulting in 20,000 yearly deaths [5].

One of the effective methods in treating a poisoned 
person is to increase excretion. Excretion is the process 
through which our body eliminates toxins after absorp-
tion. Methods include multi-dose activated charcoal, urine 
alkalization, and extracorporeal treatments [6]. Extracor-
poreal treatments (ECTRs) are typically administered to 
a select group of patients who are at risk of experiencing 
life-threatening toxicity. This specific subset may face pro-
longed stays in the ICU, where they may require mechani-
cal ventilation and could fall into a coma. Furthermore, 
these patients are at a high risk of developing permanent 
disabilities or escalating toxicity, even with supportive care 
[7]. ECTRs encompass several treatment methods, includ-
ing hemodialysis (HD), charcoal hemoperfusion (HP), 
continuous venovenous hemofiltration (CVVH), and con-
tinuous venovenous hemodiafiltration (CVVHDF) [8].

Hemodialysis is the best treatment for water-soluble 
drugs, especially drugs with a molecular weight that can 
quickly distribute through the smooth membrane. Some 
examples of this group are salicylates, ethanol, methanol, 
and lithium [9]. Due to several key advantages, hemo-
dialysis is generally the preferred treatment for most 
poisonings. It has a lower cost and fewer complications 
compared to alternatives like hemoperfusion, plasma 
exchange therapy, and albumin dialysis, and it also excels 
in treating concurrent metabolic disorders. Addition-
ally, hemodialysis boasts a high clearance capacity for a 
broad spectrum of foreign substances, further solidifying 
its role as a reliable and effective treatment option [10]. It 
is often overlooked that an intoxicated patient can have 
a significantly altered metabolic profile compared to a 
patient suffering from renal failure. This is especially true 
concerning serum levels of potassium, phosphate, and 
bicarbonate [10].

Previous studies on prognostic factors in hospital 
hemodialysis patients were based on statistical methods 
and regression models [11, 12]. A decade-long research 
conducted at Havana Hospital on patients suffering from 
end-stage kidney disease revealed certain adverse fac-
tors that predict the commencement of hemodialysis. 
These include conditions like diabetes, hypertension, and 
chronic anemia. Other factors, including malnutrition, 
hypoalbuminemia, cardiovascular disease, and liver dis-
ease, were added later [13]. These studies do not include 

poisoned hemodialysis patients, and the studies on the 
prognostic factors of poisons also include all factors 
and the outcome, and they have not worked on hemodi-
alysis separately [14–17]. A five-year study on poisoned 
patients undergoing hemodialysis revealed crucial cor-
relations between patients’ outcomes and consciousness 
level, hypotension, respiratory failure, blood urea nitro-
gen (BUN), creatinine (Cr), PH, white blood cells (WBC), 
blood glucose, acute renal failure, and the causes of 
hemodialysis treatment [18].

Prediction of hemodialysis outcomes depends on many 
factors and is different in different populations [19]. Risk 
prediction models are created to estimate the likelihood 
of an unfavorable outcome, such as mortality, based on 
various variables including demographic and clinical fac-
tors [20, 21]. Traditional techniques like proportional 
hazards regression (Cox regression) and logistic regres-
sion assume a linear relationship between these vari-
ables and the outcomes [22]. In recent times, machine 
learning techniques have emerged as more sophisticated 
and reliable approaches for predicting outcomes, pro-
vided that there is a sufficient amount of data available for 
analysis. These novel analytical methods have the poten-
tial to uncover previously unidentified variables that can 
enhance the accuracy of predictions [23]. ML refers to the 
examination and utilization of mathematical algorithms 
that can enhance their performance autonomously, with-
out the requirement of human involvement. Machine 
learning algorithms utilize previous data as input and 
generate new predicted values as output. Machine learn-
ing algorithms have been employed in numerous domains 
to solve a wide range of tasks [24, 25]. For example, in the 
comparison of death prediction in hemodialysis patients, 
the logistic regression method and the random forest 
model have been compared. Baseline data collected at 
30 days has demonstrated that random forest is a prefer-
able approach compared to logistic regression in forecast-
ing mortality at 6 months, 1 year, and 2 years, as it yields 
higher AUCs. Consequently, random forest is the pre-
ferred option for developing mortality prediction models 
in hemodialysis patients [19].

Artificial intelligence is being applied in a variety of 
medical fields nowadays. Machine learning algorithms 
are being used to speed up disease diagnosis and guide 
treatment decisions for a wide range of ailments [25–
27]. The utilization of artificial intelligence and machine 
learning in the field of toxicology, particularly clinical 
toxicology, is relatively new. Limited research has been 
conducted on the identification, diagnosis, and treat-
ment of poisoning cases by ML. Hosseini et al. used ML 
methods to predict the severity of organophosphate poi-
soning. In their study, the XGBoost model outperformed 
the other models with an AUC value of 0.907. The three 
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main variables that contributed the most to the predic-
tion of prognosis in patients with organophosphorus poi-
soning were venous blood gas pH, white blood cells, and 
plasma cholinesterase activity. XGBoost model accuracy 
was 90.1%, specificity 91.4%, sensitivity 89.5%, F-measure 
91.2% and the kappa statistic was 91.2% [28]. Validation 
of a machine learning (random forest) predictive model 
of blood lead levels (EBLLs) and its comparison with sim-
ple logistic regression was carried out in the study of Pot-
ash et al. The AUC for the random forest was 0.69, while 
for logistic regression it was 0.64. When identifying the 
top 5% of children at highest risk for having EBLLs, the 
random forest model had a positive predictive value of 
15.5% and sensitivity of 16.2%, while the logistic regres-
sion model had a positive predictive value of 7.8% and 
sensitivity of 8.1%. Both models had a specificity of over 
95%. The machine learning model was surpassed by the 
regression model in its ability to predict childhood lead 
poisoning, particularly in identifying children with the 
greatest risk [29].

Chen et al. used a machine learning approach to iden-
tify blood factors to identify the severity of paraquat 
toxicity and/or diagnose PQ poisoning in patients. The 
correlation between death from paraquat poisoning and 
two key factors, WBC and the absolute value of neutro-
philic granulocyte (AVNG), was found to be significant. 
These two factors were determined to be more effective 
than any other blood index in detecting Paraquat poison-
ing toxicity at an early stage [30].

As established, patients with poisoning need hemodi-
alysis to face high rates of adverse outcomes. though vali-
dated predictive models tailored to this group are lacking. 
developing ML algorithms to predict critical outcomes, 
and address a substantial unmet need for evidence-based 
decision support. In this study, we were looking for the 
best machine learning model to predict the prognosis 
hemodialysis in the treatment of poisoned patients.

Material and methods
Study roadmap and experiment environment
Based on a single-center registry database, the current 
retrospective cohort study was conducted at Loghman 
Hakim Hospital from July 24, 2016, to June 17, 2022. 
The purpose of the study was to develop a clinical deci-
sion support system (CDSS) to forecast the outcomes of 
dialysis candidates who have been poisoned. This study 
tested several ML algorithms based on selected variables 
to predict the prognosis of poisoned patients undergo-
ing hemodialysis. These algorithms’ performance was 
assessed by focusing on the crucial factors determined 
through a feature selection method. The current study 
uses four ML algorithms to build prediction models: 
XGBoost, HGB, K-NN, and AdaBoost classifier. The 
performance evaluation and algorithm validation crite-
ria were computed. The model development process is 
structured into four distinct phases. These phases encap-
sulate the essential steps required for building efficient 
models. Here is the breakdown:

1.	 Data Preprocessing
2.	 Feature Selection and Cross-Validation
3.	 Execution of Prediction Models
4.	 Performance Evaluations

The study’s roadmap for predicting the outcomes of 
dialysis candidates who have been poisoned is illus-
trated in Fig.  1. The researchers conducted all algorith-
mic experiments using Python programming language, 
including preprocessing, training, and performance eval-
uation (version 3.7.7).

Data set description
The study utilized a dataset from the database registry 
at Loghman Hakim Hospital (Sabara and Shafa centers), 
affiliated with Shahid Beheshti University of Medical 

Fig. 1  Proposed system roadmap for prognosis of dialysis candidates with poisoning
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Sciences. The study design received approval from the 
Ethics Committee at Shahid Beheshti University of 
Medical Sciences (Ethics Code: IR.SBMU.RETECH.
REC.1401.767). Data collection occurred from July 24, 
2016, to June 17, 2022. Of 68,181 hospitalized patients 
from 2016 to 2022 in the poisoning department of Logh-
man Hakim Hospital in Tehran, 980 patients have been 
treated using extracorporeal methods (hemodialysis). 
Among all 980 patients who participated in this study, 418 
died, while 562 remained healthy. The research examined 
a range of variables, including age, sex, type of poisoning, 
history of underlying disease, medication use and habits, 
number of times the extracorporeal method was used, 
type of extracorporeal method, laboratory tests result, and 
vital signs and patient’s outcome. The dependent variable, 
which may be considered as the outcome of the patients 
undergoing hemodialysis, was (one feature, death or 
health), while the analyzed dataset contained descriptive 
information about responders (55 attributes) (Table 1).

Outcome variable
This study employs a binary categorical outcome vari-
able to predict prognosis in poisoned patients undergo-
ing hemodialysis. The outcomes are defined as either 
healthy hospital discharge (indicating sufficient recovery 
and improvement) or death during hospitalization, which 
provide clinically meaningful classifications of potential 
prognoses. This prognostic classification serves as a use-
ful outcome measure for predictive modeling that aims to 
enhance prognosis evaluation in this patient population.

Data preprocessing
Preprocessing is pivotal in optimizing data use and training 
predictive algorithms effectively. This study used several 
preprocessing techniques to enhance data for predicting 
dialysis candidates among poisoned patients. These tech-
niques included handling missing values, standard scal-
ing, and min–max scaling. Standard scaling ensures that 
each feature has a mean of zero and a variance of one, thus 
aligning all features to a consistent scale. In the process of 
minimum and maximum scaling, values are adjusted so 
that all attributes uniformly range from 0 to 1.

Moreover, rows with a significant proportion of miss-
ing values, specifically more than 70%, are eliminated. 
A collaborative effort was made by two authors along 
with a pair of infectious disease experts. They aimed to 
identify and rectify noisy and abnormal values, errors, 
duplicates, and unrelated data.

Feature selection
Before applying ML algorithms, it is essential to perform 
feature selection. This is because irrelevant features can 

seriously undermine the performance of prediction mod-
els. By selecting relevant features, the accuracy of prediction 
models can be improved, and the computational complex-
ity of these models can be reduced. This study utilized the 
Relief Feature Selection Algorithm to pinpoint the most 
significant factors in forecasting the prognosis for patients 
suffering from poisoning and requiring dialysis. The relief 
algorithm assigns a weight to each feature in the data-
set, with the capability of updating these weights as time 
progresses.

Model development and evaluation
This research employed a range of ML methods to fore-
cast the outcomes for patients suffering from poison-
ing and potentially requiring dialysis. The techniques 
employed include XGB, K-NN, the AdaBoost, and 
HGBoosting Classifiers as follow.

The "XGB Classifier" refers to the extreme gradient 
boosting algorithm, which is an ML model used for clas-
sification tasks. It is renowned for its effectiveness, speed, 
and strong predictive performance and is built on gradi-
ent-boosting architecture [31].

The k-nearest neighbor classifier is a simple supervised 
machine learning algorithm that categorizes objects 
based on the majority class of its k-closest training exam-
ples in the feature space. The positive integer k is chosen 
to optimize classification accuracy on the dataset; small 
values of k are typically the most effective [32].

AdaBoost is an ensemble learning algorithm that com-
bines multiple weak learners into a single strong classi-
fier through an iterative process. It sequentially trains 
base models on reweighted training sets to focus more on 
previously misclassified examples. The base models then 
vote on the classification output, with more weight given 
to the stronger learners, resulting in an ensemble that 
outperforms the individual constituents [33].

Histgradient boosting is an ensemble technique that 
sequentially trains decision trees on residuals using his-
togram-based splits for high dimensionality and sparsity. 
It aggregates iterative predictions from weaker learners 
into a stronger classifier, formulated as:

Where y is the final prediction and Treei(x) is the pre-
diction from the decision tree. This gradient-boosting 
approach enables rapid and effective modeling for sparse, 
high-dimensional data [34].

For the development and evaluation of the machine 
learning models, first, the dataset was randomly divided 
into 90% for training and 10% for testing the models. 
Second, a tenfold cross-validation technique was used to 
train and test the ML models over the selected features. 

y = Treei(x)
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Cross-validation helps estimate model performance on 
unseen data and prevent overfitting. Dividing the data 
into training and testing sets helps reduce sampling bias 

and ensures representative distribution between the par-
titions. This allows for the fair evaluation of model per-
formance on new data.

Table 1  Demographic, laboratory, and clinical data of patients

a PCO2 (partial pressure of carbon dioxide), PO2 partial pressure of oxygen, BE (Base excess), PLT platelet cells, HGB hemoglobin, HCT hematocrit, INR international 
normalized ratio, BS Blood sugar, LDH Lactate dehydrogenase, AST Aspartate aminotransferase, ALT Alanine transaminase, ALP Alkaline phosphatase, CPK Creatine 
phosphokinase, CK-MB Creatine kinase-MB, PT Prothrombin time, PTT Partial thromboplastin time

Demographic Data

Variables Frequency (%) Values

Gender Female 187 (19.1%) Female/ male

Male 793 (80.9%)

Age Under 20 years old 100 (10/4%) Numerical

21–40 years 604 (61.6%)

41–60 years 211 (21.5%)

61–80 years 60 (6.1%)

Above 81 years 5 (0.5%)

Co-ingestion 62 (6.3%) Yes /No

Smoking 46 (4.7%) Yes /No

Alcohol consumption 627 (64%) Yes /No

Opium abuse 75 (7.7%) Yes /No

Stimulants abuse 13 (1.3%) Yes /No

History of pervious disease 150 (15.3%) Yes /No

History of taking medication 77 (7.9%) Yes /No

Hemoperfusion 9 (0/9%) Yes /No

Intubation 203 (20.7%) Yes /No

ICU admission 187 (19.1%) Yes /No

Antidote therapy 904 (92.2%) Yes /No

Duration of hospitalization. median (Minimum–Maximum) 2 (1–116) Numerical

Laboratory and Clinical Data

  13 ≤ GCS < 15 659 (67.2%) Numerical

  8 ≤ GCS < 13 62 (6.3%) Numerical

  Coma (GCS < 8) 108 (11%) Yes/No

  Bradypnea 46 (4.7%) Numerical

  Temperature (Mean ± SD) 36.9 ± 0.56 Numerical

  Bradycardia 14 (1.4%) Numerical

  Tachycardia 145 (14.8%) Numerical

  Hypotension 38 (3.9%) Numerical

  Hypertension 293 (29.9%) Numerical

  Metabolic Acidosis 823 (84%) Numerical

  Acute Kidney Injury 536 (54.7%) Numerical

  Renal disease 641(65%) Yes/No

  HCO3 (Mean ± SD) 14.4 ± 23.8 Numerical

  BUN (meq/l) (Mean ± SD) 36.7 ± 27.2 Numerical

  Creatinine (meq/l) (Mean ± SD) 1.7 ± 4.1 Numerical

  Blood Glucose (mg/dl) (Mean ± SD) 132.5 ± 66.6 Numerical

  Blood PH (Mean ± SD) 7.2 ± 0.4 Numerical

  Sodium (meq/l) (Mean ± SD) 137.8 ± 10.8 Numerical

  Potassium (meq/l) (Mean ± SD) 4.7 ± 3.4 Numerical

  PCO2, PO2, HCO3, BE, Bs, WBC, Hb, Hct, PLT, AST, ALT, ALP, LDH, CPK, CPK mb, PT, PTT, INRa ------- Numerical

Patient Outcomes Death 418 Yes /No

Healthy (recovery) 562 Yes /No
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Cross-validation (CV) helps tune hyperparameters to 
optimal values for a given dataset while avoiding overfit-
ting. Randomized search cross-validation method was 
implemented for hyperparameters tuning to identify 
optimal model architectures.

The performance of Four ML models was assessed 
using five common evaluation metrics: accuracy, pre-
cision, recall, F1-score, and AUC-ROC. These metrics 
quantify predictive ability on unseen data and suitability 
for clinical implementation. These metrics were measured 
using Eqs. 1 to 4. Furthermore, to facilitate a more com-
prehensive comparison of algorithm performance, addi-
tional assessments were conducted, considering the time 
required to construct the model, and kappa statistic (KS).

Results
Characteristics of patients
Following the implementation of the exclusion crite-
ria, out of the 68,181 patients admitted to the poisoning 

(1)
classification accuracy =

true positive(TP)+ true negative(TN)

TP+ TN+ false positive(FP)+ false negative(FN)
∗ 100

(2)classification sensitivity =
Tp

TP+ FN
∗ 100

(3)classification specificity =
TN

TN+ FP
∗ 100

(4)

classification error =
FP+ FN

TP+ TN + FP+ FN
∗ 100

wards, 980 patients, representing 1.4% of the cases, under-
went hemodialysis. Demographic investigation revealed 
793 (80.9%) males and 187 (19.1%) females. Detailed 
demographic data is presented in Table 1. The average age 
of the subjects was 36.5 years, with a standard deviation 
of 14  years. The age distribution was significantly differ-
ent (p < 0.001). Six hundred four cases (61.6%) were in the 
age range of 21–40  years. One hundred seventeen cases 
(11.9%) had intentional poisoning. As shown in Fig.  2, 
the highest cause of poisoning was due to methanol con-
sumption (858 cases, 87.6%). Eight hundred thirty cases 
(84.7%) had no previous history of the disease. Two cases 
had a history of kidney disease. Nine hundred-three cases 
(92.1%) had no history of taking drugs, and 627 (64%) 

had a history of alcohol consumption. Hemodialysis was 
the most widely used extracorporeal method (971 cases, 
99.1%). The median number of hemodialysis was one, and 
the maximum was 18 times. Hemoperfusion was per-
formed for five cases of methanol, three cases of multid-
rug, and one case of methadone poisoning.

Feature selection algorithm results
Prior to inputting the dataset into the classifiers, this 
study employed a widely recognized feature selection 
technique to identify the most crucial factors in pre-
dicting the prognosis of poisoned patients eligible for 
dialysis. At this stage, the relief feature selection algo-
rithm was used to determine the importance or weight 
of each variable selected from the full-featured dataset. 

Fig. 2  Cause of intoxication in the studied patients. MDT = Multiple Drug Toxicity
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This algorithm operates with the same methodology as 
the K-NN algorithm, calculating the weight of each fea-
ture. The subsequent section presents the results of the 
executed feature selection algorithm, highlighting the 
selected variables and their respective ranks based on 
their weights (Table 2).

The relief algorithm ranked ten key features, i.e., Age, 
Intubation, PH, history of previous disease, HCO3, GCS, 
ICU admission, Acute kidney injury, and potassium 
(Table 2). Based on this ranking, the top three predictive 
features for the prognosis of dialysis candidates who have 
been poisoned are age, intubation, and blood PH.

k‑fold cross‑validation
The features were identified by the Relief Feature Selec-
tion algorithm and the complete dataset was tested on 
four ML models using a tenfold cross-validation meth-
odology. This approach involved utilizing 90% of the 
poisoned patient dataset to train the ML models and 
reserving the remaining 10% to test the algorithms. 
To better evaluate the ML model’s performance, this 
research calculated the average metric values from 
the tenfold cross-validation, supplemented with a 95% 
confidence interval. The best hyperparameters for each 
machine learning algorithm, summarized in Table  3, 
were selected based on this approach to maximize per-
formance on the dataset.

The results of tenfold cross-validation for four clas-
sifiers to predict the prognosis of poisoned patients 
undergoing hemodialysis are shown in Tables 4 and 5.

Figure 3 showcases a classification report diagram for 
the top-performing ML model, chosen according to the 
highest evaluation metrics and the optimal AUC rate. 
The time taken to construct each model, measured in 
seconds, and the Kappa Statistic (KS) metrics for all 
four classifiers are detailed in Table 6.

The data presented in Tables  3 and 5 indicates that 
the HGB classifier outperformed the other three models 
when tested on the dataset. It achieved an average classi-
fication accuracy of 94.8%, a specificity of 93.5%, a sensi-
tivity of 94%, an F-score of 89.2%, and a ROC of 92%. The 
time taken to execute the machine learning algorithms 
are showed in Table 6.

Table 2  Features chosen by the Relief algorithm and feature 
weight

Order Feature name Importance 
(feature 
weight, %)

1 Age 25.3

2 Intubation 24.07

3 PH 23.4

4 History of previous disease 18.5

5 HCO3 18.02

6 GCS 15.9

7 ICU Admission 11.71

8 Acute kidney injury 11.53

9 Potassium 9.66

10 Hypotension 9.49

Table 3  Best hyper parameters selected for machine learning algorithms

ML algorithms Hyper parameters Importance

XGB ‘min_chid_weigh’ = 4’max_depht’ = 12,’learning_rate’ = 0.4, ‘gamma’ = 0.6, ‘colsample_bytree’ = 0.9 0.88

K-NN (leaf_size = list(range(1,20)), n_neighbors = list(range(1,9)), p = [1, 2]) 0.73

AdaBoost (“random_state”: 924, “n_estimators”: 92, “learning rate”: 0.4, “algorithm”: “samme.R”) 0.89

HGB (‘verbose’ = 4, ‘random_state’ = 84, ‘max_leaf_nodes’ = 78, ‘max_iter’ = 180, ‘max_depht’ = 11, ‘learning 
rate’ = 0.8)

0.94

Table 4  Average evaluation metrics from ten runs of ML models

a CI Confidence interval, STD Standard deviation

Classifier Mean Accuracy Mean Specificity (%) Mean Sensitivity Mean F- measure ROC Rate

K-NN Mean 0.738 0.718 0.796 0.74 0.784

95% CI (0.72, 0.75) (0.69, 0.72) (0.78, 0.81) (0.72, 0.76) (0.78, 0.79)

STD 0.0314 0.014 0.021 0.0381 0.014

XGB Mean 0.88 0.841 0.87 0.835 0.89

95% CIa (0.87, 0.89) (0.83, 0.85) (0.85, 0.89) (0.83, 0.84) (0.87, 0.9)

STDa 0.03 0.027 0.029 0.001 0.014



Page 8 of 11Rahimi et al. BMC Medical Informatics and Decision Making           (2024) 24:38 

As shown in Table 6, the XGB algorithm outperforms 
others in terms of speed, requiring merely 61 s for model 
construction. The HGB Classifier is the second fast-
est, requiring approximately 75 s to build the prediction 
model. On the other hand, the K-NN model takes up to 
174 s for model building, while the AdaBoost algorithm 
takes 97 s. Figure 3 illustrates the error rates of classifiers 
when applied to the given dataset.

The Kappa metrics and error rates of classifiers indi-
cated that the XGB algorithm and the HGB classifier per-
form the best, with Kappa metrics rates of 90% and 91%, 
respectively.

The results demonstrated that the HGB classifier out-
performs the other classifiers in this study, as indicated 
by its superior Kappa metrics and lower error rate. Thus, 
given these findings, the HGB classifier is considered the 
optimal algorithm for building a CDSS interface to pre-
dict the prognosis of poisoned patients who may need 
dialysis. Figure  3 showcases the classification report for 
the HGB classifier, highlighting it as the highest-per-
forming ML model in this study based on the assessment 
metrics.

Discussion
The present study aimed to forecast the prognosis of 
patients who have been poisoned and qualify for dialy-
sis, utilizing innovative machine learning methods. As 
per the algorithm outcomes, the most crucial predic-
tors of hemodialysis treatment results were age, intuba-
tion, PH, history of previous diseases, HCO3, GCS, ICU 
admission, acute kidney injury, potassium, and hypo-
tension. Among the four models that were assessed, the 
HGB classifier demonstrated exceptional performance on 
the test dataset. It attained an impressive average accu-
racy rate of 94.8%, an average specificity rate of 93.5%, 
an average sensitivity rate of 94%, an average F-score of 
89.2%, and an average ROC of 92%.

Several studies have reported influencing factors on 
the prognosis of poisoned patients who are candidates 
for dialysis. In their study of methanol poisoning cases 
treated with hemodialysis, Pajouhmand et al. uncovered 
a significant connection between the length of dialysis 
and the presence of dyspnea (P = 0.028) and the quantity 
of alcohol ingested (P = 0.02). Following a logistic regres-
sion analysis, the only statistically significant difference 
between the groups was creatinine levels (P = 0.02) [35]. 
In their study, Soucie et  al. examined the factors that 
increase the likelihood of death among patients undergo-
ing dialysis within the first 90 days. They discovered that 

Table 5  Average evaluation metrics obtained from ten runs of ML models

a CI Confidence interval, STD Standard deviation

Classifier Mean Accuracy Mean Specificity (%) Mean Sensitivity Mean F- measure ROC Rate

AdaBoost Mean 0.89 0.86 0.91 0.91 0.927

95% CIa (0.89, 0.91) (0.85, 0.87) (0.89, 0.93) (0.87, 0.93) (0.91, 0.92)

STDa 0.002 0.0014 0.002 0.004 0.0018

HGB Mean 0.948 0.935 0.94 0.892 0.92

95% CI (0.93, 0.96) (0.92, 0.94) (0. 93, 0.96) (0.88, 0. 91) (0.91, 0.93)

STD 0.029 0.003 0.0125 0.019 0.010

Fig. 3  Classification report for HGB classifier

Table 6  Building time, training, and testing errors of selected 
classifiers

Evaluation criteria Classifier

K-NN AdaBoost XGB HGB

Best building time model (s) 174 9 7 61 75

Kappa statistic 81% 87.10% 90% 91.24%
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advanced age, being of white race and male gender, expe-
riencing physical and nutritional limitations, smoking, 
and having a history of cancer, congestive heart failure, 
clinical depression, or myocardial infarction all contrib-
ute to an elevated risk of mortality in individuals [36]. 
According to Msaad et al., hemodialysis patients with car-
diovascular diseases, undernutrition, and inflammation 
have a higher mortality risk [37]. Kute et  al. conducted 
a study on hemodialysis patients who were poisoned by 
methanol and found that those with severe metabolic aci-
dosis (pH ≤ 6.90), requiring a ventilator, and experiencing 
coma/seizures upon admission had a higher incidence of 
death [38]. The studies indicate that the factors obtained 
in each study are influenced by the cause of hemodialy-
sis or dialysis in patients and the population being stud-
ied. Our study, which comprehensively examined all 
poisoning factors leading to hemodialysis, revealed that 
factors such as age, intubation, previous disease history, 
and blood pH are similar to those found in other studies. 
There have been no prior investigations conducted using 
artificial intelligence on this specific sample model, which 
comprises poisoned dialysis patients.

Montemayor et al. research demonstrated that random 
forest is a more effective method than logistic regression 
for developing mortality prediction models in hemodi-
alysis patients. The random forest model had a signifi-
cantly higher AUC compared to the logistic regression 
model (with a difference of 3.78% and a p-value of less 
than 0.001) [19]. The observations of Radović et  al. 
showed that the expected mortality rate for hemodialysis 
patients was determined using the Kernel support vector 
machine algorithm and K-means clustering algorithm. 
The accuracy of mortality rate prediction was up to 
94.12% and up to 96.77% when observing a full database 
or a reduced database containing data for three major 
diseases [39]. Ahmed I. Akl conducted a study where a 
neural network (NN) model and direct dialysate quanti-
fication (DDQ) were utilized to predict urea concentra-
tions during hemodialysis. The results of the NN model 
were compared to the direct dialysate quantification 
(DDQ) model, and the prediction error was found to 
be 10.9%. The researchers determined that using artifi-
cial intelligence in urea kinetics can provide insight into 
intradialysis profiling based on each person’s specific 
clinical requirements [40].

A study conducted by Jiao Hu et al. focused on predict-
ing the serum albumin level in hemodialysis patients. 
To achieve this, they utilized an enhanced version of the 
binary mutant quantum grey wolf optimizer (MQGWO) 
in combination with the fuzzy k-nearest neighbor 
(FKNN). The results showed an impressive accuracy of 
98.39% and a specificity of 96.77%. These findings suggest 
that this model holds significant promise for identifying 

trends in serum albumin levels among HD patients [41]. 
In our study, the HGB classifier showed better perfor-
mance on the test dataset. The effectiveness of a machine 
learning model, like the HGB classifier, compared to 
other classifiers, varies depending on the particular prob-
lem and dataset at hand. By comparing the performance 
of various machine learning algorithms for different 
tasks, we can gain a better understanding of their relative 
strengths and weaknesses [42]. There are two primary 
benefits to using HGB, which are the ability to handle 
missing data and its flexibility and scalability. HGB has 
the capability to handle missing values, making it useful 
in  situations where data may be incomplete. Addition-
ally, HGB is highly flexible and scalable, allowing it to be 
applied in a variety of different applications [43].

Limitation
Since we used a retrospective dataset, there were certain 
fields that were missing or contained noisy information 
(such as incoherent, incomplete, abnormal, meaningless, 
and erroneous data), which could have affected the mod-
eling process. To address this, we sought the expertise of 
two clinical toxicologists to define the normal range for 
each variable. Any values that fell outside this range were 
identified and completed by referring to patient records 
or consulting the responsible physician. Additionally, 
records with more than 70% empty fields were removed 
and imputed with mean or mode values for continuous 
and discrete variables, respectively.

The dataset did not include data on economic status, 
lifestyle habits, molecular biology, genomic or proteomic 
factors that could potentially impact the prediction of 
poisoned patients. Including these factors may enhance 
the predictive power of the models. Therefore, it is rec-
ommended that further studies be conducted with more 
accurate validations to improve the quality of modeling 
and minimize any bias in prognosis.

Conclusion
This research is the first to use ML models for predict-
ing the outcome of poisoned patients who are about 
to undergo hemodialysis. The most effective model for 
prognosis prediction was found to be HGB. This system 
can be utilized by physicians and clinical toxicologists 
to guide their interventions in order to reduce mor-
tality and minimize the consequences of hemodialysis 
on poisoned patients, thus alleviating the strain on the 
healthcare system.
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